If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2=16
We move all terms to the left:
q^2-(16)=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 5x-250=3(x+22) | | 6x+15+2x+45=180 | | T+3t-t=18 | | 4(3x+10)=15x+25 | | 6r-3r+5=17 | | h^-55=37 | | -4.8f+6.4=-8 | | (-13b)+9b=20 | | x2+8x+7=(x+7) | | (-13v)-(-15v)-2v+3v=15 | | u^=-48 | | d^2+99=0 | | s-63/6=5 | | f=21-3 | | -2(x-6)^=8 | | f^2-47=53 | | 2t+8-5t=-8 | | 8+2x=x+6 | | X+3y+2=23 | | 8(c+58)=-24 | | -2m+3=15-12m | | X+8-x+91=9x | | 1/(3)x^2-3=0 | | 1w+4.76=8.45 | | f^2+6=64 | | 2(x-6)^=8 | | 6h=5 | | Y+1=-3/2(x-4) | | -8-5d=24-d | | 12m+2=14+3m | | 8(s+4)=88 | | -4(8-x)=4/5(x+4) |